skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Xuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Materials that rectify light into current in their bulk are desired for optoelectronic applications. In Weyl semimetals that break inversion symmetry, bulk photocurrents may arise due to nonlinear optical processes that are enhanced near the Weyl nodes. However, the photoresponse of these materials is commonly studied by scanning photocurrent microscopy, which convolves the effects of photocurrent generation and collection. Here we directly image the photocurrent flow inside the type-II Weyl semimetals WTe2 and TaIrTe4 using high-sensitivity quantum magnetometry with nitrogen-vacancy centre spins. We elucidate a mechanism for bulk photocurrent generation, which we call the anisotropic photothermoelectric effect, where unequal thermopowers along different crystal axes drive intricate circulations of photocurrent around the photoexcitation. Using overlapping scanning photocurrent microscopy and magnetic imaging at the interior and edges of the sample, we visualize how the anisotropic photothermoelectric effect stimulates the long-range photocurrent collected in our WTe2 and TaIrTe4 devices through the Shockley–Ramo mechanism. Our results highlight a widely relevant source of current flow and will inspire photodetectors that utilize bulk materials with thermoelectric anisotropy. 
    more » « less
  2. Mild methods to cleave the carbon-oxygen (C−O) bond in alkyl ethers could simplify chemical syntheses through the elaboration of these robust, readily available precursors. Here we report that dibromoboranes react with alkyl ethers in the presence of a nickel catalyst and zinc reductant to insert boron into the C−O bond. Subsequent reactivity can effect oxygen-to-nitrogen substitution or one-carbon homologation of cyclic ethers and more broadly streamline preparation of bioactive compounds. Mechanistic studies reveal a cleavage-then-rebound pathway via zinc/nickel tandem catalysis. 
    more » « less